Skip to content

Caravan-DK

Overview

Caravan-DK is the Denmark dataset from the Caravan project. Danish subset of the global Caravan dataset, providing standardized hydrological data for Danish catchments.

Dataset Information

  • Region: Denmark
  • Project: Caravan
  • Module: hydrodataset.caravan_dk
  • Class: CaravanDK

About Caravan

The Caravan project provides a global, standardized dataset of catchment attributes and meteorological forcings for large-sample hydrology. It combines data from multiple sources to create a unified dataset for hydrological modeling and analysis.

Key Characteristics

  • Standardized variable naming across regions
  • Quality-controlled data
  • Comprehensive catchment attributes
  • Multiple meteorological data sources
  • Suitable for machine learning applications

Features

Static Attributes

Static catchment attributes include: - Basin area and geometry - Topographic characteristics - Land cover information - Soil properties - Climate indices - Human impact indicators

Dynamic Variables

Timeseries variables available: - Streamflow (observed) - Precipitation (multiple sources) - Temperature (min, max, mean) - Potential evapotranspiration - Solar radiation - Snow water equivalent - And more...

Usage

Basic Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
from hydrodataset.caravan_dk import CaravanDK
from hydrodataset import SETTING

# Initialize dataset
data_path = SETTING["local_data_path"]["datasets-origin"]
ds = CaravanDK(data_path)

# Get basin IDs
basin_ids = ds.read_object_ids()
print(f"Number of basins: {len(basin_ids)}")

# Check available features
print("Static features:", ds.available_static_features)
print("Dynamic features:", ds.available_dynamic_features)

# Read timeseries data
timeseries = ds.read_ts_xrdataset(
    gage_id_lst=basin_ids[:5],
    t_range=ds.default_t_range,
    var_lst=["streamflow", "precipitation"]
)
print(timeseries)

# Read attribute data
attributes = ds.read_attr_xrdataset(
    gage_id_lst=basin_ids[:5],
    var_lst=["area", "p_mean"]
)
print(attributes)

Working with Multiple Data Sources

Caravan datasets often provide multiple precipitation and temperature sources:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
# Compare different precipitation products
precip_data = ds.read_ts_xrdataset(
    gage_id_lst=basin_ids[:3],
    t_range=["2000-01-01", "2005-12-31"],
    var_lst=[
        ("precipitation", "era5"),
        ("precipitation", "mswep"),
        ("precipitation", "chirps")
    ]
)

# Use specific meteorological forcing
ts_data = ds.read_ts_xrdataset(
    gage_id_lst=basin_ids[:5],
    t_range=["2000-01-01", "2010-12-31"],
    var_lst=[
        "streamflow",
        ("precipitation", "era5land"),
        ("temperature_mean", "era5land")
    ]
)

Reading Specific Variables

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
# Read with specific time range
ts_data = ds.read_ts_xrdataset(
    gage_id_lst=basin_ids[:10],
    t_range=["1990-01-01", "2020-12-31"],
    var_lst=["streamflow", "precipitation", "temperature_mean", "pet"]
)

# Read basin area
areas = ds.read_area(gage_id_lst=basin_ids[:10])

# Read mean precipitation
mean_precip = ds.read_mean_prcp(gage_id_lst=basin_ids[:10])

Data Quality

Caravan datasets undergo quality control: - Removal of unrealistic values - Gap filling documentation - Metadata completeness checks - Cross-validation with regional datasets

API Reference

hydrodataset.caravan_dk.CaravanDK

Bases: HydroDataset

Caravan_DK dataset class extending HydroDataset.

This class uses a custom data reading implementation to support a newer dataset version than the one supported by the underlying aquafetch library. It overrides the download URLs and provides its own parsing and caching logic.

Source code in hydrodataset/caravan_dk.py
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
class CaravanDK(HydroDataset):
    """Caravan_DK dataset class extending HydroDataset.

    This class uses a custom data reading implementation to support a newer
    dataset version than the one supported by the underlying aquafetch library.
    It overrides the download URLs and provides its own parsing and caching logic.
    """

    def __init__(
        self, data_path: str, region: Optional[str] = None, download: bool = False
    ) -> None:
        """Initialize Caravan_DK dataset.

        Args:
            data_path: Path to the Caravan_DK data directory
            region: Geographic region identifier (optional)
            download: Whether to download data automatically (default: False)
        """
        super().__init__(data_path)
        self.region = region
        self.download = download

        # Define the new URLs for the latest dataset version
        new_url = "https://zenodo.org/records/15200118"

        def do_nothing(self, *args, **kwargs):
            pass

        def custom_boundary_file(self) -> os.PathLike:
            return os.path.join(
                self.path, "shapefiles", "camelsdk", "camelsdk_basin_shapes.shp"
            )

        def custom_csv_path(self):
            return os.path.join(self.path, "timeseries", "csv", "camelsdk")

        def custom_nc_path(self):
            return os.path.join(self.path, "timeseries", "netcdf", "camelsdk")

        def custom_other_attr_fpath(self):
            """returns path to attributes_other_camelsdk.csv file"""
            return os.path.join(
                self.path, "attributes", "camelsdk", "attributes_other_camelsdk.csv"
            )

        def custom_caravan_attr_fpath(self):
            """returns path to attributes_caravan_camelsdk.csv file"""
            return os.path.join(
                self.path, "attributes", "camelsdk", "attributes_caravan_camelsdk.csv"
            )

        def custom_hyd_atlas_fpath(self):
            return os.path.join(
                self.path,
                "attributes",
                "camelsdk",
                "attributes_hydroatlas_camelsdk.csv",
            )

        # Create class attributes dictionary for dynamic class creation
        class_attrs = {
            "url": new_url,
            "boundary_file": property(custom_boundary_file),
            "csv_path": property(custom_csv_path),
            "nc_path": property(custom_nc_path),
            "other_attr_fpath": property(custom_other_attr_fpath),
            "caravan_attr_fpath": property(custom_caravan_attr_fpath),
            "hyd_atlas_fpath": property(custom_hyd_atlas_fpath),
            "_maybe_to_netcdf": do_nothing,
        }

        # Create a custom Caravan_DK class using type() to preserve the class name
        CustomCaravanDK = type("Caravan_DK", (Caravan_DK,), class_attrs)

        # Instantiate our custom class
        self.aqua_fetch = CustomCaravanDK(data_path)

    @property
    def _attributes_cache_filename(self):
        return "caravan_dk_attributes.nc"

    @property
    def _timeseries_cache_filename(self):
        return "caravan_dk_timeseries.nc"

    @property
    def default_t_range(self):
        return ["1981-01-02", "2020-12-31"]

    # Define standardized static variable mappings
    # These variables are already present in the dataset, so we just map them
    # get the information of features from "https://essd.copernicus.org/articles/17/1551/2025/essd-17-1551-2025.pdf"
    _subclass_static_definitions = {
        "p_mean": {"specific_name": "p_mean", "unit": "mm/day"},
        "area": {"specific_name": "area_km2", "unit": "km^2"},
    }

    # Define standardized dynamic variable mappings
    _dynamic_variable_mapping = {
        StandardVariable.STREAMFLOW: {
            "default_source": "observations",
            "sources": {
                "observations": {"specific_name": "q_cms_obs", "unit": "m^3/s"}
            },
        },
        StandardVariable.PRECIPITATION: {
            "default_source": "era5_land",
            "sources": {
                "era5_land": {
                    "specific_name": "total_precipitation_sum",
                    "unit": "mm/day",
                }
            },
        },
        StandardVariable.TEMPERATURE_MAX: {
            "default_source": "era5_land",
            "sources": {
                "era5_land": {"specific_name": "temperature_2m_max", "unit": "°C"},
                "dewpoint": {
                    "specific_name": "dewpoint_temperature_2m_max",
                    "unit": "°C",
                },
            },
        },
        StandardVariable.TEMPERATURE_MIN: {
            "default_source": "era5_land",
            "sources": {
                "era5_land": {"specific_name": "temperature_2m_min", "unit": "°C"},
                "dewpoint": {
                    "specific_name": "dewpoint_temperature_2m_min",
                    "unit": "°C",
                },
            },
        },
        StandardVariable.TEMPERATURE_MEAN: {
            "default_source": "era5_land",
            "sources": {
                "era5_land": {"specific_name": "temperature_2m_mean", "unit": "°C"},
                "dewpoint": {
                    "specific_name": "dewpoint_temperature_2m_mean",
                    "unit": "°C",
                },
            },
        },
        StandardVariable.POTENTIAL_EVAPOTRANSPIRATION: {
            "default_source": "era5_land",
            "sources": {
                "era5_land": {
                    "specific_name": "potential_evaporation_sum_era5_land",
                    "unit": "mm/day",
                },
                "fao_penman_monteith": {
                    "specific_name": "potential_evaporation_sum_fao_penman_monteith",
                    "unit": "mm/day",
                },
            },
        },
        StandardVariable.SNOW_WATER_EQUIVALENT: {
            "default_source": "mean",
            "sources": {
                "mean": {
                    "specific_name": "snow_depth_water_equivalent_mean",
                    "unit": "mm",
                },
            },
        },
        StandardVariable.SNOW_WATER_EQUIVALENT_MIN: {
            "default_source": "min",
            "sources": {
                "min": {
                    "specific_name": "snow_depth_water_equivalent_min",
                    "unit": "mm",
                },
            },
        },
        StandardVariable.SNOW_WATER_EQUIVALENT_MAX: {
            "default_source": "max",
            "sources": {
                "max": {
                    "specific_name": "snow_depth_water_equivalent_max",
                    "unit": "mm",
                },
            },
        },
        StandardVariable.SOLAR_RADIATION: {
            "default_source": "mean",
            "sources": {
                "mean": {
                    "specific_name": "surface_net_solar_radiation_mean",
                    "unit": "W/m^2",
                },
            },
        },
        StandardVariable.SOLAR_RADIATION_MIN: {
            "default_source": "min",
            "sources": {
                "min": {
                    "specific_name": "surface_net_solar_radiation_min",
                    "unit": "W/m^2",
                },
            },
        },
        StandardVariable.SOLAR_RADIATION_MAX: {
            "default_source": "max",
            "sources": {
                "max": {
                    "specific_name": "surface_net_solar_radiation_max",
                    "unit": "W/m^2",
                },
            },
        },
        StandardVariable.THERMAL_RADIATION_MIN: {
            "default_source": "min",
            "sources": {
                "min": {
                    "specific_name": "surface_net_thermal_radiation_min",
                    "unit": "W/m^2",
                },
            },
        },
        StandardVariable.THERMAL_RADIATION_MAX: {
            "default_source": "max",
            "sources": {
                "max": {
                    "specific_name": "surface_net_thermal_radiation_max",
                    "unit": "W/m^2",
                },
            },
        },
        StandardVariable.THERMAL_RADIATION: {
            "default_source": "mean",
            "sources": {
                "mean": {
                    "specific_name": "surface_net_thermal_radiation_mean",
                    "unit": "W/m^2",
                },
            },
        },
        StandardVariable.SURFACE_PRESSURE_MIN: {
            "default_source": "min",
            "sources": {
                "min": {"specific_name": "surface_pressure_min", "unit": "Pa"},
            },
        },
        StandardVariable.SURFACE_PRESSURE_MAX: {
            "default_source": "max",
            "sources": {
                "max": {"specific_name": "surface_pressure_max", "unit": "Pa"},
            },
        },
        StandardVariable.SURFACE_PRESSURE: {
            "default_source": "mean",
            "sources": {
                "mean": {"specific_name": "surface_pressure_mean", "unit": "Pa"},
            },
        },
        StandardVariable.U_WIND_SPEED_MIN: {
            "default_source": "min",
            "sources": {
                "min": {"specific_name": "u_component_of_wind_10m_min", "unit": "m/s"},
            },
        },
        StandardVariable.U_WIND_SPEED_MAX: {
            "default_source": "max",
            "sources": {
                "max": {"specific_name": "u_component_of_wind_10m_max", "unit": "m/s"},
            },
        },
        StandardVariable.U_WIND_SPEED: {
            "default_source": "mean",
            "sources": {
                "mean": {
                    "specific_name": "u_component_of_wind_10m_mean",
                    "unit": "m/s",
                },
            },
        },
        StandardVariable.V_WIND_SPEED_MIN: {
            "default_source": "min",
            "sources": {
                "min": {"specific_name": "v_component_of_wind_10m_min", "unit": "m/s"},
            },
        },
        StandardVariable.V_WIND_SPEED_MAX: {
            "default_source": "max",
            "sources": {
                "max": {"specific_name": "v_component_of_wind_10m_max", "unit": "m/s"},
            },
        },
        StandardVariable.V_WIND_SPEED: {
            "default_source": "mean",
            "sources": {
                "mean": {
                    "specific_name": "v_component_of_wind_10m_mean",
                    "unit": "m/s",
                },
            },
        },
        StandardVariable.VOLUMETRIC_SOIL_WATER_LAYER1_MIN: {
            "default_source": "min",
            "sources": {
                "min": {
                    "specific_name": "volumetric_soil_water_layer_1_min",
                    "unit": "m^3/m^3",
                },
            },
        },
        StandardVariable.VOLUMETRIC_SOIL_WATER_LAYER1_MAX: {
            "default_source": "max",
            "sources": {
                "max": {
                    "specific_name": "volumetric_soil_water_layer_1_max",
                    "unit": "m^3/m^3",
                },
            },
        },
        StandardVariable.VOLUMETRIC_SOIL_WATER_LAYER1: {
            "default_source": "mean",
            "sources": {
                "mean": {
                    "specific_name": "volumetric_soil_water_layer_1_mean",
                    "unit": "m^3/m^3",
                },
            },
        },
        StandardVariable.VOLUMETRIC_SOIL_WATER_LAYER2_MIN: {
            "default_source": "min",
            "sources": {
                "min": {
                    "specific_name": "volumetric_soil_water_layer_2_min",
                    "unit": "m^3/m^3",
                },
            },
        },
        StandardVariable.VOLUMETRIC_SOIL_WATER_LAYER2_MAX: {
            "default_source": "max",
            "sources": {
                "max": {
                    "specific_name": "volumetric_soil_water_layer_2_max",
                    "unit": "m^3/m^3",
                },
            },
        },
        StandardVariable.VOLUMETRIC_SOIL_WATER_LAYER2: {
            "default_source": "mean",
            "sources": {
                "mean": {
                    "specific_name": "volumetric_soil_water_layer_2_mean",
                    "unit": "m^3/m^3",
                },
            },
        },
        StandardVariable.VOLUMETRIC_SOIL_WATER_LAYER3_MIN: {
            "default_source": "min",
            "sources": {
                "min": {
                    "specific_name": "volumetric_soil_water_layer_3_min",
                    "unit": "m^3/m^3",
                },
            },
        },
        StandardVariable.VOLUMETRIC_SOIL_WATER_LAYER3_MAX: {
            "default_source": "max",
            "sources": {
                "max": {
                    "specific_name": "volumetric_soil_water_layer_3_max",
                    "unit": "m^3/m^3",
                },
            },
        },
        StandardVariable.VOLUMETRIC_SOIL_WATER_LAYER3: {
            "default_source": "mean",
            "sources": {
                "mean": {
                    "specific_name": "volumetric_soil_water_layer_3_mean",
                    "unit": "m^3/m^3",
                },
            },
        },
        StandardVariable.VOLUMETRIC_SOIL_WATER_LAYER4_MIN: {
            "default_source": "min",
            "sources": {
                "min": {
                    "specific_name": "volumetric_soil_water_layer_4_min",
                    "unit": "m^3/m^3",
                },
            },
        },
        StandardVariable.VOLUMETRIC_SOIL_WATER_LAYER4_MAX: {
            "default_source": "max",
            "sources": {
                "max": {
                    "specific_name": "volumetric_soil_water_layer_4_max",
                    "unit": "m^3/m^3",
                },
            },
        },
        StandardVariable.VOLUMETRIC_SOIL_WATER_LAYER4: {
            "default_source": "mean",
            "sources": {
                "mean": {
                    "specific_name": "volumetric_soil_water_layer_4_mean",
                    "unit": "m^3/m^3",
                },
            },
        },
    }

default_t_range property

__init__(data_path, region=None, download=False)

Initialize Caravan_DK dataset.

Parameters:

Name Type Description Default
data_path str

Path to the Caravan_DK data directory

required
region Optional[str]

Geographic region identifier (optional)

None
download bool

Whether to download data automatically (default: False)

False
Source code in hydrodataset/caravan_dk.py
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
def __init__(
    self, data_path: str, region: Optional[str] = None, download: bool = False
) -> None:
    """Initialize Caravan_DK dataset.

    Args:
        data_path: Path to the Caravan_DK data directory
        region: Geographic region identifier (optional)
        download: Whether to download data automatically (default: False)
    """
    super().__init__(data_path)
    self.region = region
    self.download = download

    # Define the new URLs for the latest dataset version
    new_url = "https://zenodo.org/records/15200118"

    def do_nothing(self, *args, **kwargs):
        pass

    def custom_boundary_file(self) -> os.PathLike:
        return os.path.join(
            self.path, "shapefiles", "camelsdk", "camelsdk_basin_shapes.shp"
        )

    def custom_csv_path(self):
        return os.path.join(self.path, "timeseries", "csv", "camelsdk")

    def custom_nc_path(self):
        return os.path.join(self.path, "timeseries", "netcdf", "camelsdk")

    def custom_other_attr_fpath(self):
        """returns path to attributes_other_camelsdk.csv file"""
        return os.path.join(
            self.path, "attributes", "camelsdk", "attributes_other_camelsdk.csv"
        )

    def custom_caravan_attr_fpath(self):
        """returns path to attributes_caravan_camelsdk.csv file"""
        return os.path.join(
            self.path, "attributes", "camelsdk", "attributes_caravan_camelsdk.csv"
        )

    def custom_hyd_atlas_fpath(self):
        return os.path.join(
            self.path,
            "attributes",
            "camelsdk",
            "attributes_hydroatlas_camelsdk.csv",
        )

    # Create class attributes dictionary for dynamic class creation
    class_attrs = {
        "url": new_url,
        "boundary_file": property(custom_boundary_file),
        "csv_path": property(custom_csv_path),
        "nc_path": property(custom_nc_path),
        "other_attr_fpath": property(custom_other_attr_fpath),
        "caravan_attr_fpath": property(custom_caravan_attr_fpath),
        "hyd_atlas_fpath": property(custom_hyd_atlas_fpath),
        "_maybe_to_netcdf": do_nothing,
    }

    # Create a custom Caravan_DK class using type() to preserve the class name
    CustomCaravanDK = type("Caravan_DK", (Caravan_DK,), class_attrs)

    # Instantiate our custom class
    self.aqua_fetch = CustomCaravanDK(data_path)